
STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 1 of 75

UNIT CONTENT PAGE Nr

I SOFTWARE & SOFTWARE ENGINEERING 02

II DEVELOPING REQUIREMENTS 12

III MODELING WITH CLASSES 17

IV ARCHITECTING AND DESIGNING SOFTWARE 35

V TESTING AND INSPECTING TO ENSURE HIGH QUALITY 53

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 2 of 75

s

UNIT - I
SOFTWARE AND SOFTWARE ENGINEERING

The nature of software:

Software differs in important ways from the types of artifacts produced by other types

of engineers:

1. Software is largely intangible
2. The mass-production of duplicate pieces of software is trivial.
3. The software industry is labor intensive.
4. It is all too easy for an inadequately trained software developer to create a piece of

software that is difficult to understand and modify.
5. Software is physically easy to modify; however, as a side effect of theirmodifications,

new bugs appear.
6. Software does not wear out with use like other engineering artefact , but instead its

design deteriorates as it is changed repeatedly

Types of software and their differences

Custom software is developed to meet the specific needs of a particularcustomer and tends to
be of little use to others.

Ex: web sites, air-traffic control systems and software for managing the specialized finances of

large organizations.

Generic software, on the other hand, is designed to be sold on the openmarket, to perform
functions that many people need, and to run on generalpurposecomputers. Generic software is
often called Commercial Off-The-Shelf software (COTS), and it is sometimes also called shrink-
wrapped software

Ex: word processors, spreadsheets, compilers, web browsers, operating systems, computer
games and accounting packages for small businesses.

Embedded software runs specific hardware devices which are typically soldon the open
market. users cannot usually replace embedded software or upgrade it without also replacing
the hardware.

EX: washing machines, DVD players, microwave ovens and automobiles.
Another important way to categorize software in general is whether it is
processing software.

real time ordata

 The most distinctive feature of real-time software is that it has to react immediately (i.e.
in real time) to stimuli from the environment (e.g. the pushing of buttons by the user, or
a signal from a sensor).

 Data processing software is used to run businesses. It performs functionssuch as
recording sales, managing accounts, printing bills etc.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 3 of 75

c

e

What is software engineering?
Definition:

Software engineeringis the process of solving customers’ problems by the systematic
development and evolution of large, high-quality software systems within cost, time and other
constraints.

Software engineering as a branch of the engineering profession

People have talked about software engineering since 1968 when the term wascoined at
a NATO conference.

Prior to the 1940s, very few jurisdictions required engineers to be licensed. Since
engineering has become a licensed profession, adherence to codes of ethics and taking personal
responsibility for work have also become essential characteristics. In the 1970s the discipline of
computer science developed,
developers.

and educated many of the current generation of software

In the mid-1990s the first jurisdictions started to recognize software engineering as a
distinct branch of engineering. For example, in the United Kingdom those who study software
engineering in computer scien e departments at universities have been able to achieve the
status of Chartered Engineer. Since considerable numbers of these graduates are now entering
the workforce, software engine ring has become firmly established as a branch of engineering.

Stakeholders in software engineering
We will classify these stakeholders into four major categories

1. Users. These are the people who will use the software.
2. Customers (also known as clients). These are the people who make decisions about

ordering and paying for the software.
3. Software developers. These are the people who develop and maintain the software,

many of whom may be called software engineers.
4. Development managers: These are the people who run the organization that is

developing the software; they often have an educational background in business
administration.

Software quality
Attributes of software quality

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 4 of 75

Five of the most important attributes of software quality (External)
1. Usability. The higher the usability of software, the easier it is for users to work with it.
2. Efficiency. The more efficient software is, the less it uses of CPU-time, memory, disk

space, network bandwidth and other resources.
3. Reliability. Software is more reliable if it has fewer failures.
4. Maintainability. This is the ease with which you can change the software. The more

difficult it is to make a change, the lower the maintainability.
5. Reusability. A software component is reusable if it can be used in several different

systems with little or no modification.

Software engineers improve one quality at the expense of another.
Example:
Improving efficiency may make a design less easy to understand.
Achieving high reliability often
computations;

entails repeatedly checking for errors and adding redundant

Improving usability may require adding extra code, which might in turn reduce overall efficiency
and maintainability.
There are also many internal quality criteria.Ex: The amount of commenting of the code.
The complexity of the code measured in terms of the nesting depth.

Quality for the short term vs. quality for the long term
It is human nature to worry more about short-term needs and ignore the longer-term

consequences of decisions. This can have severe consequences. Examples of short-term quality
concerns are: Does the software meet the customer’s immediate needs?
efficient for the volume of data we have today?

Is it sufficiently

Software engineering projects
Software projects into three major categories:

1. Evolutionary projects(those that involve modifying an existing system)
Evolutionary or maintenance projects can be of several different types:

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 5 of 75

n

Corrective projects involve fixing defects.
Adaptive projects involve changing the system in response to changes in the
environment in which the software runs.
Enhancement projects involve adding new features for the users.
Re-engineering or perfective projects involve changing the system internally so that it is
more maintainable

2. Greenfield projects(involve starting to develop a system from scratch) Developers often
enjoy such brand new, or Greenfield, projects because they have a wider freedom to be
creative about the design. In a Greenfield project you are not constrained by the design
decisions and errors made by predecessors.

3. Projects building on a framework or a set of existing components
This type of project, which is becoming increasingly common, starts with a framework,
or involves plugging together several components that are already developed and
provide significant functionality. The code that you write to connect the two component
packages is called glue.

Activities common to software projects
1. Requirements and specification you must first understand the problems, the customer’s

business environment, and the available technology which can be used to solve the
problems. Overall process may include

Domain analysis: understanding the background needed
Defining the problem: precise problem that needs solving.
Requirements gathering: obtaining all the ideas people have
software should do.

about what the

Requirements analysis: organizing the information that has been gathered, and
making decisions
Requirements specification: writing a precise set of instructions that define what
the software should do.

2. Design
Important activities during design include:

Deciding what requirements should be implemented in hardware and what in
software. This is called systems engineering
Deciding how the software is to be divided into subsystems. This process is often
called software architecture ;(architectural patterns or styles.)
Deciding how to construct the details of each subsystem. This process is often called
detailed design.
Deciding in detail how the user is to interact with the system, and the look and feel of
the system. This is called user interface design
Deciding how the data will be stored on disk in databases or files.

3. Modeling
Modeling is the process of creating a representation of the domain or the software.
Ex: visual language called UML.These includes:

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 6 of 75

o

Use case modeling.
Structural modeling.
Dynamic and behavioral modeling

4. Programming
Programming is an integral part of software engineering. It should be thought of

as the final stage of design. People who limit their work to programming are often
todaycalled ‘coders’.

5. Quality assurance
It includes the following:
Reviews and inspections. These are formal meetings organized to discuss
requirements, designs or code to see if they are satisfactory.
Testing. This is the process of systematically executing the software to see if it behaves
as expected.

6. Deployment
Deployment involves distributing and installing the software and
components of the system such as databases, special hardware etc.

any other

7. Managing the process
The manager has to undertake the following tasks:
Estimating the cost of the system. This involves studying the requirements and
determining how much effort they will take to design and implement.
Planning. This is the process of allocating work to particular developers, andsetting a
schedule with deadlines.

Difficulties and risks in s ftware engineering as a whole
Complexity and large numbers of details. Software systems tend to becomecomplex.
Resolution. Design the system for flexibility right from the start. Divide the system into
smaller subsystems

Uncertainty about technology. Technology on which a system depends will work as
expected or not.
Resolution. Avoid technology sold by just a single vendor

Uncertainty about requirements. Whether it meets the customer’s needs or not
Resolution. Understand the application domain so you can communicate effectively with
clients and users

Uncertainty about software engineering skills. Software engineering is heavily labour-
intensive;

Resolution. Make sure software engineers have sufficient general education, plus
training in the technology to be used.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 7 of 75

h

Constant change. Both
regularly.

technology and requirements can be expected tochange

Resolution. Design for flexibility to accommodate potential changes. Stay aware of
things that may change.

Deterioration of software design. Software deteriorates due to successive changes that
introduce bugs.

Resolution. Build flexibility and other aspects of maintainability into t
the start

e software from

‘Political’ risks. Not everybody will be happy with the requirements. Not everybody may
want the system.

Resolution. Participate in promoting and marketing the project.

Review of Object Orientation
What is object orientation?

Object-oriented systems combine procedural abstraction with
dataabstraction.Procedural abstraction and the procedural paradigm

From the earliest days of programming, software has been organized around the notion
of procedures (also in some contexts called functions or routines). In the so-called procedural
paradigm, the entire system is organized into a setof procedures. One ‘main’ procedure calls

several other procedures, which inturn call others. Procedural paradigm is complex if
eachprocedure works with many types of data, or if each type of data has many different
procedures that access and modify it.

Data abstraction
Data abstractions can

help reduce some of a system’s complexity. Records

andstructures were the first data abstractions to be introduced. The idea is to grouptogether
the pieces of data that describe some entity, so that programmers can manipulate that data as
a unit.
Example:
if account is of type checking then
do something
else if account is of type savings then
do something else
else
do yet another thing
endif

Imagine also that clients can hold several accounts of different types, and some
accounts can be held jointly; also the different account holders might havedifferent rights.
Rules to deal with issues like these would be scattered throughout the code, making change
very difficult.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 8 of 75

The object-oriented paradigm:
abstractions

organizing procedural abstractions in the context of data

Definition:
The object-oriented paradigm is an approach to the solution of problems in which

allcomputations are performed in the context of objects. The objects are instances of
programming constructs, normally called classes, which are data abstractions and which
contain procedural abstractions that operate on the objects.The difference between the object-
oriented and procedural paradigms.

Procedural Paradigm Object-oriented Paradigm

1. Code is organized into procedures 1.Code is organized into classes
2. Each manipulate different types of data 2.Each contain procedures for

manipulating instances of thatclass

Classes and objects
Objects

An object is a chunk of structured data in a running software system. It canrepresent
anything with which you can associate properties and behavior.Properties characterize the
object, describing its current state. Behavior is theway an object acts and
changing its state.

EX:
Margaret:
Date ofBirth=“1984/03/03”
address=“150 C++ Rd.”
position=“Teller”

Jane:
Date ofBirth=“1955/02/02”
address=“99 UML St.”

reacts, possibly

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 9 of 75

position=“Manager”

Mortgage account 29865:
balance=198760.00
opened=“2003/08/12”
property=“75 Object Dr.”

Classes and their instances
Classes are the units of data abstraction in an object-oriented program. Ex:
Employee
name
dateofBirth
address
position

Instance variables

A variable is a place where you can put data. Each class declares a list of variables
corresponding to data that will be present in each instance; such variables are called instance
variables. There are two groups of instance variables,

Attributes
An attribute is a simple piece of data used to represent the properties of an object. For

example, each instance of class Employee might have the followingattributes:
name
dateOfBirth
socialSecurityNumber
telephoneNumber
addres

Associations

An association represents the relationship between instances of one class andinstances
of another. For example, class
relationships:

Employee in a business application mighthave the following

supervisor (association to class Manager)
tasksToDo (association to class Task)

Variables versus objects
Difference between variables and objects

At any given instant, a variable can refer to a particular object or to no object at all.
Variables that refer to objects are therefore often called references.

Variables can be local variables in methods; these are created when a method runs and
are destroyed when a method returns.

Instance variables versus class variables

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 10 of 75

u

If you declare that a class has an instance variable called var, then you are
sayingthateach instance of the class will have its own slot named var. Therefore, forexample,
each Employee has a supervisor.

Sometimes, however, you want to create a variable whose value is shared by all
instances of a class. Such a variable is known as a class variable or static variable.

Methods, operations and polymorphism
 Methods: are procedural abstractions used to implement the behavior of a class.
 An operation: is a higher-level procedural abstraction. It is used to discuss and specify a

type of behavior
 Polymorphism: is a property of object-oriented software by which an abstract operation

may be performed in different ways, typically in different classes.

Concepts that define object orientation
To be called object oriented, a language needs to have the following features:
Identity: Every object has a unique identity;
Classes: Classes, which describes the structure and function of a set of objects.
Inheritance: Features inherit from super classes to subclasses.
Polymorphism:several methods can have the same name and implement the same abstract
operation.
Abstraction: There are many abstractions in an object-oriented program:

An objectis an abstraction of something of interest to the program,
Aclassis an abstraction of a set of objects;
Asuperclassis an abstraction of a set of subclasses:
Amethodis a procedural abstraction that hides its implementation
Anoperationis an abstraction of a set of methods.
Attributes and associations are abstractions of the underlying instance variables used to

implement them.

Modularity
An object-oriented system can be constructed entirely from a setof classes, where each

class takes care of a particular s bset of the functionality

Encapsulation
A class acts as a container to hold its features (variables and methods). Abstraction,

modularity and encapsulationeach help provide informationhiding.

Difficulties and risks in programming lang. choice and OO programming

Language evolution and deprecated features
Every programming language evolves, such that code written for earlier versions will not

run or gives warning messages threatening that it will not run in the future.

Resolution
Pay careful attention to the documentation describing which featuresof Java are

deprecated.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 11 of 75

Efficiency can be a concern in some object-oriented systems
Most implementations of Java run using a virtual machine. This means that Java code

tends not to be as efficient as code written in a language such as C++.Java’s exception handling
and safety checking also can consume considerable CPU time.

Resolution
Learn about the different programming strategies that make a Java program run faster.

Consider languages other than Java for number-crunching applications.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 12 of 75

h

t

Domain analysis
Domain analysis is

UNIT - II
DEVELOPING REQUIREMENTS

the process by which a software engineer learns
backgroundinformation. The word ‘domain’ in this case means the general field of business or
technology in which the customers expect to be using the software.

Benefits:
Faster development. You will be able to communicate with the stakeholdersmore effectively

Better system. Knowing the subtleties of the domain will help ensure that thesolutions you
adopt will more effectively solve the customer’s problem.

Anticipation of extensions. Armed with domain knowledge, you will obtain insights into
emerging trends and you will notice opportunities for future development.

A domain analysis document should be divided into sectionssuch as the following:

A. Introduction. Name the domain, and give the motivation for performing theanalysis.

B. Glossary. Describe the meanings of all terms used in the domain that are eithernot part of
everyday language or else have special meanings.

C. General knowledge about the domain. Summarize important facts or rules. Such knowledge
includes scientific principles, business processes, analysis techniques

D. Customers and users. Describe who will or might buy the software, and inwhat industrial
sectors they operate.

E. The environment. Describe t e equipment and systems used.

F. Tasks and procedures currently performed. Make a list of what the variouspeople do as they
go about their work. It is important to understand both theprocedures people are supposed to
follow as well as the shortcuts they tend totake.

G. Competing software. Describe what software is available to assist the usersand customers.
Discuss its advantages and disadvantages.

H. Similarities across domains and organizations. Determine what distinguishes this domain
and the customer’s organization from others, as well as what they have in common.

The starting point for software projects
When a development team starts work on a software project, their starting point can

vary considerably. We can distinguish different types of project, based on whether or not

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 13 of 75

e
n

software exists at the outset, and whether or not requirements exist at the outset. The four
broad categories of starting point are

In projects of type A or B, the development team starts to develop n
scratch – this is sometimes called green-field development, alluding to co
building where none existed before.

wsoftware from
structing a new

In cases C and D the team evolves an existing system, a rather more common situation.
In cases A and C, the development team has to determine the requirements for the software –
they either have a bright idea for something that might sell, or else they are asked to solve a
problem and have to work out the best way to solve it.

In cases B and D, on the other hand, the development team is contracted todesign and
implement a very specific set of requirements.

Defining the problem and the scope
Once you have learned enough about the domain, you can begin to determinethe

requirements. The first step in this process is to work out an initial definition of the problem to
be solved. Problem can be expressed as a difficulty the users or customers are facing, or as an
opportunity that will result in some benefit such as improved productivity or sales.

You should write the problem as a simple statement. Careful attention to the problem
statement is important since, later on, the requirements will be evaluated based on the
question: ‘are we adequately solving the problem? A good problem statement is short and
succinct – one or two sentences are best.

What is a requirement?
Definition:

A requirement is a statement describing either 1) an aspect of what the proposed
system must do, or 2) a constraint on the system’s development. In either case, it must
contribute in some way towards adequately solving the customer’s problem; the set of
requirements as a whole represents a negotiated agreement among all stakeholders.

Types of requirements
Requirements can be

divided into four major types: functional, quality,

platformandprocess. Requirements documents normally include at least the first two types.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 14 of 75

e

o

Functional requirements
Functional requirements

describe what the system should do; in other words, they

describe the services provided for the users and for other systems. The functional requirements
shouldinclude
1) Everything that a user of the system would need to know regarding what the system does,
and
2) Everything that would concern any other system that has to interface to this system.
The functional requirements can be further categorized as follows:

Whatinputs the system should accept
Whatoutputs the system should produce
What data the system should store that other systems might use
Whatcomputations the system should perform.
Thetiming and synchronization of the above

Some techniques for gathering requirements
We list some structured techniques that are particularly effective at gathering (also

known as eliciting) requirements.

1) Observation
You can read documents and discuss requirements extensively with users, butoften only

the process of observing the users at work will bring to light subtledetails that you might
otherwise miss. Observation means taking a notebook and ‘shadowing’important potential
users as they do their work, writing down everything they do. You can also ask users to talk as
they work, explaining what they are doing.

2) Interviewing
Interviewing is a widely used technique. However, a well-conducted series ofinterviews can

elicit much more information than poorly planned ad-hocinterviews. Firstly, plan to have as
many members of the softwar engineering teaminterview as many stakeholders as possible.
Spread out the interviews over time, and allow yourself several hours for eachinterview, even if
you do not expect to use that much time. Prepare an extensive list of questions, although do
not be disappointed if thereis n

Ask about specific details
t enough time to have them all answered in a given interview.

Ask about the stakeholder’s vision for the future
Ask if they have any alternative ideas
Ask what would be a minimally acceptable solution to the problem.
Ask for other sources of information.
Have the interviewee draw diagrams.

3) Brainstorming
Brainstorming is an effective way to gather information from a group of people.The

general idea is that the group sits around a table and discusses some topic with the goal of
generating ideas. The following is a suggested;

1. Call a meeting with representation from all stakeholders. Effective brainstorming
sessions can be run with five to 20 people.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 15 of 75

r
c

2. Appoint an experienced moderator (also known as a facilitator) – that
knows how to run brainstorming meetings, and will lead theprocess. The
participate in the discussions if he or she wishes.

is,someone who
moderator may

3. Arrange the attendees around the periphery of a table and give them plenty ofpaper to work
with.

4. Decide on a ‘trigger question’. This is a key step in the process. A trigger question is one for
which the participants can provide simple one-line answersthat are more than just numbers or
yes/no responses.

5. Ask each participant to follow these instructions:
(a) Think of an answer to the trigger question, no matter how trivial or
Questionable the answer is!

(b) Write the answer down in one or two lines on a sheet of paper, one idea per
sheet.

(c) Pass the paper to the neighbor on your left (i.e. clockwise) to stimulate his
or her thoughts.

(d) Look at the answers passed from your neighbor to the right and pass these on to
your left as well. Use the ideas you have read to stimulate your ownideas.

6.Continue step 5 until ideas stop flowing or a fixed time (5–15 minutes) passes.

7.Moving around the table, ask everybody to read out one of the ideas on the sheets that
happen to be in front of them. If anyone seeks an explanation, the originator of the idea may
comment briefly (although he or she may choose not to say anything in order to remain
anonymous). The moderator, or a secretary, writes each idea on a flip-chart. Then, optionally,
the whole group may briefly dis uss the idea.

8. After a fixed time period, or after all ideas have recorded on the flip-chart,
the group may take a series of votes to prioritize them. For example, every person may be given
a fixed number of votes that
important.

they can allocate to the answers they think are the most

4) Prototyping
A prototype is a program that is rapidly implemented and contains only a smallpart of

the anticipated functionality of a complete system. Its purpose is to gather requirements by
allowing software engineer to obtain early feedback about their ideas. The simplest kind of
prototype is a paper prototype of the user interface. Thisis a set of pictures of the system that
are shown to customers and users in sequence to explain what would happen when the system
runs.

Managing changing requirements

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 16 of 75

One of the most important things to realize about requirements is that they change. Just
because you have written a requirements document, and have obtained approval of it by all the
stakeholders, does not mean that you can confidently design and implement the system as
specified.

The following are some of the changes to anticipate:
Business process changes

Businesses regularly adjust the way they do things in order to better compete in the
market or merely because they gain experience and decide that an alternative approach is
better. Changes to business processes can also be prompted by such things as changes in laws,
as well as growth or rearrangement of the company.

Technology changes
A new release of the operating system, or some other system with which your system

interacts, may force you to reassess the requirements.

Better understanding of the problem
Even though everybody might be confident about the requirements when they are first

approved, various stakeholders may discover problems when looking at them again several
months later.When dealing with changes to requirements it is very important to avoid
requirements creep. This is what occurs when the changes are really enhancements in disguise.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 17 of 75

u

s
s

What is UML?

UNIT - III
MODELING WITH CLASSES

The Unified Modeling Language (UML) is a standard graphical language for modeling
object-oriented software. It was developed in the mid-1990s as a collaborative effort by James
Rumbaugh, Grady Booch and Ivar Jacobson, each of whom had developed their own notation
in the early 1990s. The ‘U’ in UML stands for ‘unified’, since its three developers combined the
best features of the languages they had each previously developed. The custodian of the UML
standard is the Object Management Group (OMG). In 2004 the OMG approved version 2.0 of
UML.

UML contains a variety of diagram types, including:
Class diagrams, which describe classes and their relationships.
Interaction diagrams, which show the behavior of systems in terms of how objects
interact with each other. Two types of interaction diagrams: sequence diagrams and
communication diagrams.
State diagrams and activity diagrams, which show how systems behave.
Component and deployment diagrams, which show how the various components of
systems are arranged logically and physically.

Additional interesting features:
The diagrams you create with it are intended to be interconnected to form a unified model; we
will discuss this more in the next subsection.
It has a detailed semantics, describing mathematically the meaning of many aspects of its
notations.
It has extension mechanisms, which allow software designers to represent concepts that are
not part of the core of UML. We will show some examples of these mechanisms.
It has an associated textual language called Object Constraint Language (OCL) that allows you to
formally state various facts abo t the elements of the diagrams.

Essentials of UML class diagram
The main symbols shown on cla s diagrams are:
Classes, which represent the types of data themselves.
Associations, which show how instances of classes reference instances of other classes.
Attributes, which are simple data found in instances.
Operations, which represent the functions performed by the instances.
Generalizations, which are used to arrange classes into inheritance hierarchies.

Classes
A class is represented as a box with the name of the class inside. The name should

always be singular and start with a capital letter. The class diagram may also show the
attributes and operations contained in each class. This is done by dividing a class box into two
or three smaller boxes: the top box contains the class name, the next box lists attributes, and
the bottom box lists operations.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 18 of 75

Associations and multiplicity

An association is used to show how instances of two classes will reference each other.
The association is drawn as a line between the classes. The multiplicity indicates how many
instances of the class at this end of the association can be linked to an instance of the class at
the other end of the association.

A multiplicity of 1 indicates that there must be exactly one instance linked to each
object at the other end of the association A very common multiplicity is *, which is normally
read as ‘many’, and means any integer greater than or equal to zero.

Labeling associations
Each association can be labeled, to make explicit the nature of the association. There

are two types of labels, association names and role names.

An association name should be a verb or verb phrase, and is placed next to the middle
of the association. One class becomes the subject and the other class becomes the object of the
verb.

Another way of labeling an association is to use a role name. Role names can be
attached to either or both ends of an association. A role name acts, in the context of the
association, as an alternative name for the class to which it isattached.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 19 of 75

Analyzing and validating associations
Three of the most common patterns of multiplicity

One-to-many. A company has
company.

many employees, but an employee can only work for one

Many-to-many. An administrative assistant can work for many managers, and a manager can
have many administrative assistants.

One-to-one. For each company, there is exactly one board of directors. Also, a board is the
board of only one company.

Association classes
In some circumstances, an attribute that concerns two associated classes cannot be

placed in either of the classes.
For example, imagine the association in which a student can register in any number of

course sections, and a course section can have any number of students. In which class should
the student’s grade be put?

The solution to this problem is to create an association class to hold the grade.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 20 of 75

Reflexive associations
It is possible for an association to connect a class to itself.

Links as instances of associations
In the same way that we say an object is an instance of a class, we say that a link is an

instance of an association. Each link connects two objects – an instance of each of the two
classes involved in the association.
Directionality in associations

Associations and links are by default bi-directional. That is, if a Driver object is linked to a

Car object, then the Car is also implicitly linked to that Driver. If youknow the car, you can find
out its driver – or if you know the driver, you can findout the car.

It is possible to limit the navigability of an association’s links by adding an arrow at one
end.

Generalization
They must follow the “is a” rule, and several other rules as well.

1) Avoiding unnecessary generalizations
A common mistake made by beginners is to overdo generalization.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 21 of 75

Another possible solution, using multiple inheritances.This approach uses even more
classes and generalizations but avoids duplication of features.

A hierarchy of classes in which there would not be any differences in operations. This
should be avoided

2) Handling multiple generalization sets
A generalization set is a labeled group of generalizations with a common superclass; the

label describes the criteria used to specialize the superclass into two or more subclasses. It is
clearest to unite all the generalizations in a set using a single open triangle. You place the label
next to the open triangle.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 22 of 75

Allowing different combinations of features by duplicating a generalization set label at a
lower level of the hierarchy. Duplication like this should be avoided

3) Avoiding having objects change class
Another issue that can arise when creating generalizations is avoiding the need for

objects to change class. In general, an object should never need to change class

A situation in which objects will need to change class from time to time. Generalizations
of this type should be avoided

Instance diagrams

An object diagram shows an example configuration of objects and links that may exist at
a particular point during execution of a program. Objects are shown as rectangles, just like

classes; the difference is that the name of the class is underlined and preceded by a
colon,:Employee, for example. You can also give a name to each instance before the colon, as in
Pat:Employee, or even omit the class name entirely if it is clear from the context, such as Pat

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 23 of 75

n

Object diagrams generated from class diagrams
It is a common mistake for beginners to think of generalizations as special associations.

This misconception arises because both generalizations and associations
together in a class diagram.

connect classes

However, the differences between the two concepts are profound.
An association describes a relationship that will exist between instances at runtime.
A generalization describes a relationship between classes in a class diagram.

More advanced features of class diagrams
We describe additional features for adding more specific information to the diagrams.

Aggregation
Aggregations are special associations that represent ‘part–whole’ relationships. The

‘whole’ side of the relationship is often called the assembly or the aggregate.

A composition is a strong kind of aggregation in which if the aggregate is destroyed,
then the parts are destroyed as well. A composition is shown using a solid (filled-in) diamond,
as opposed to an open one.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 24 of 75

w

Unlike other associations, UML allows aggregations to be drawn as a hierarchy, as
shown .The use of such hierarchies in valid models is quite rare, however. It is a much less
flexible way to model vehicle parts than the first diagram.

Interfaces
An interface is similar to a class, except it lacks instance variables and implemented

methods. It normally contains only abstract methods although it may also contain class
variables. We can say that an interface describes a portion of the visible behaviorof a set of
objects.

Two ways of showing the cashier interface

Constraints, notes and descriptive text
Very often, in a class diagram, you want to say more than the graphical UMLnotation

readily allows. There are three ways in which you can add additional information to a UML
diagram:

Descriptive text and other diagrams
It is highly recommended to embedyour diagrams in a larger document that describes

the system more fully.

Notes. In contrast to the descriptive text described above, a note is a smallblock of text
embedded in a UML diagram. The box has a ‘bent corner’.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 25 of 75

n
t

Constraints
A constraint is like a note, except that it is written in a formallanguage that can be

interpreted by a computer. In a UML diagram, a constraint is shown in curly brackets (also
called ‘braces’).

Modeling interactions and behavior
We look at how to model system dynamics, focusing on two aspects: interactions and

behavior.
An interaction model shows a set of actors and objects interacting by exchanging

messages.
A behavior model shows how an object or system changes state in reaction to a series

of events.
Twotypes of UML interaction diagram used to model detailed sce arios of system

execution: sequence diagrams and communication diagrams.State and activi y diagrams, two
other UML diagram types that are used to model the possible behavior of a system.

Interaction diagrams
Interaction diagrams are used to model the dynamic aspects of a software system – they

help to visualize how the system runs. They show how a set of actors and objects communicate
with each other to perform the steps of a use case, or of some other piece of functionality. The
set of steps, taken together, is called an interaction.Interaction diagrams can show several
different types of communication.

These include messages exchanged over a network, simple procedure calls, and
commands issued by an actor through the user interface. Collectively, these are referred to as
messages.Elements found in an interaction diagram:

Instances of classes or actors
Instances of classes (i.e. objects) are shown as boxes with the class and object identifier

underlined. Actors are shown using the same stick-person symbol as in use case diagrams.

Messages
These are shown as arrows from actor to object or from object to object. One of the

main objectives of drawing interaction diagrams is to betterunderstand the sequence of
messages.

Two kinds of diagrams are used to show interactions:
 sequence diagrams
 communication /collaboration diagrams

Sequence diagrams
 A sequence diagram shows the sequence of messages exchanged by the set of objects

(and optionally an actor) performing a certain task.
 The objects are arranged from left to right across the diagram – an actor that initiates

the interaction is often shown on the left.
 The vertical dimension represents time.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 26 of 75

n

 The top of the diagram is the starting point, and time progresses downwards towards
the bottom of the diagram.

 A vertical dashed line, called a lifeline, is attached to each object or actor.
 The lifeline becomes a box, called an activation box, during the period of time that the

object is performing computations. The object is said to have live activation during these
times.

 A message is represented as an arrow between activation boxes of the sender and
receiver. You give each message a label; it can optionally have an argument list and a
response. The complete syntax is as follows:

response:=message(arg,...)
As with class diagrams, i

teraction diagrams can be drawn at various levels of detail. The

level of detail you choose depends on what you wish to communicate.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 27 of 75

A sequence diagram showing more detail about the student registration
processincluding an optional combined fragment

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 28 of 75

e

n

A sequence diagram showing a loop fragment

Class diagram
A sequence diagram can show the destruction of an object using a big X symbol on a

lifeline.

Communication diagrams/Collaboration diagram
A communication diagram shows several objects working together. It appears asa graph

with a set of objects and actors as the vertices.

A communication diagram is very much like an object diagram except that, as we will
discuss below, it shows commu ication links instead of links of associations. It also has much in
common with a sequence diagram, except that lifelines, activation boxes and combined
fragments are absent. Instead, you draw a communication link between each pair of objects
involved in the sending of a m ssage; the messages themselves are attached to this link. You
represent a message using an arrow, labeled with the message name and optional arguments.
You specify the order in which messages are sent by prefixing each message using some
numbering scheme.

Communication links can exist between two objects whenever it is possible for one
object to send a message to the other one. Several situations can make this possible:
The classes of the two objects are joined by an association. This is the most common case.
The receiving object is stored in a local variable of the sending method (but theobjects are not

yet joined by an association). we tag such a message with thestereotype ≪ local≫ .
A reference to the receiving object has been received as a parameter of anearlier message to
the sender.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 29 of 75

e

The receiving object is global. This is the case when a reference to an object canbe obtained

using a public static method (e.g. using the Singleton pattern). Thestereotype ≪ global≫
The objects communicate over a network. The stereotype ≪ network≫
used to show this.

could be

How to choose between using a sequence or a communication diagram?
Since sequence and communication diagrams contain much the sameinformation, you

have to decide which of the two you should draw. Sequencediagrams are often the better
choice in the following four situations:

You want the reader to be able to easily see the order in which messages occur.
You want to build an interaction model from a use case. Use cases already hav
a sequence of steps; sequence diagrams expand on these to show which objectsare involved.
You need to show details of messages, such as parameters and return values.
Doing so on communication diagrams can result in clutter.
You need to show loops, optional sequences and other things that can
expressed using combined fragments.

only beproperly

Communication diagrams, patterns and collaborations
A communication diagram can be used to represent aspects of a design pattern the two

steps involved in the main interaction of the Proxy pattern. First, a client object makes a
request to a<<Proxy>>object. Then, if the <<HeavyWeight>> is needed and is not already

loaded, the <<Proxy≫ causes it to be loaded, before returning the result to the client.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 30 of 75

State diagrams
A state diagram, also known as a state machine diagram, is another way of expressing

dynamic information about a system. It is used to describe the externally visible behavior of a
system or of an individual object.

At any given point in time, the system or object is said to be in a certain state.
It remains in this state until an event occurs that causes it to change state. Being in a state
means that it behaves in a specific way in response to any events thatoccur. You represent a
state using a rounded rectangle that contains the name ofthe state.

A transition represents a change of state in response to an event, and is considered to
occur instantaneously – that is, to take no time. You draw a transition using an arrow
connecting two states. You can also show a label on a transition; this represents the event that
causes the change of state.

There are two other special symbols that can appear on a state diagram:
A black circle represents the start state.
A black circle with a ring around it represents an end state.

Elapsed-time transitions
The event that triggers a transition can be a certain amount of elapsed time.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 31 of 75

Transitions triggered by a condition becoming true

A condition can be distinguished from an event name since it contains a Boolean
operator. The two conditions in this figure are classSize>= minimum, and classSize>= maximum.

Activities and actions in state diagrams

You can represent two kinds of computations using state diagrams.
An activity is something that occurs over a period of time and takes place while the

system is in a state. An activity is shown textually within a state box by the word ‘do’ followed
by a ‘/’ symbol, and a description of what is to be done. When you have details such as actions
in a state, you draw a horizontal line above them to separate them from the state name.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 32 of 75

n

e

An action is something that takes place effectively instantaneously in any
situations:
When the system takes a particular transition.

of the following

Upon entry into a particular state, no matter which transition causes entry into that state.
Upon exit from a particular state, no matter which transition is being taken.

An action should take place with no noticeable consumption of time; therefore itshould
be something simple, such as sending a message, starting a hardware d vice orsetting a
variable.An action is always shown preceded by a slash (‘/’) symbol. If the action is to
beperformed during a transition, then the syntax is event/action. If the action is to
beperformed when entering or exiting a state, then it is written in the state boxwith the
notation enter/action or exit/action.

Nested substates and guard co ditions
A state diagram can be nested inside a state. The states of the inner diagram arecalled

substates.

Activity diagrams
An activity diagram is like a state diagram, except that it has a few additionalsymbols

and is used in a different context. In a state diagram, most transitionsare caused by external
events; however, in an activity diagram, most transitionsare caused by internal events, such as
the completion of an activity.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 33 of 75

n

One of the strengths of activity diagrams is the representation of concurrentactivities.
Concurrency is shown using forks, joins and rendezvous, all three of which are represented as
short lines, at which transitions can start and end.

Aforkhas one incoming transition and multiple outgoing transitions. The result is that
execution splits into two concurrent threads.

Ajoinhas multiple incoming transitions and one outgoing transition. The outgoing
transition will be taken only when all incoming transitions have been triggered. The incoming
transitions must be triggered in separate threads.

Arendezvoushas multiple incoming and multiple outgoing transitio s. Once all the
incoming transitions are triggered, the system takes all the outgoing transitions, each in a
separate thread.

An activity diagram also has two types of nodes for branching within a singlethread.

These are represented as small diamonds:

Adecision node has one incoming transition and multiple outgoing transitions,each with
a Boolean guard in square brackets. Exactly one of the outgoing transitions will be taken.

Amerge node has two incoming transitions and one outgoing transition. It isused to
bring together paths that had been split by decision nodes.

While state diagrams typically show states and events concerning only oneclass, activity
diagrams are most often associated with several classes. Thepartition of activities among the

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 34 of 75

existing classes can be explicitly shown in anactivity diagram by the introduction of swimlanes.
These are boxes that form columns, each containing activities associated with one or more
classes.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 35 of 75

The process of design

UNIT - IV
ARCHITECTING AND DESIGNING SOFTWARE

Design as a series of decisions

Definition:
Design is a problem-solving process whose objective is to find and describe a way:

 To implement the system’s functional requirements...
 While respecting the constraints imposed by the non-functional requirements... -

including the budget
 And while adhering to general principles of good quality

Each issue normally has several alternative solutions, also known as design options. The
designer makes a design decision to resolve each issue. To make each design decision, the
software engineer uses all the knowledge including:

 Knowledge of the requirements;
 Knowledge of the design as created so far;
 Knowledge of the technology available;
 Knowledge of software design principles and ‘best practices’; and
 Knowledge about what has worked well in the past.

Once a decision is made, new issues are raised. Several different alternatives may have
opposite advantages and disadvantages, with no clear ‘winner’. The space of possible designs
that could be achieved by choosing different sets of alternatives is often called the design
space. Each design decision should be recorded, along with the reasoning
making the decision (known as the design rationale).

that went into

Parts of a system: subsystems, components and modules

Component: any piece of software or hardware that has a clear role and can be isolated,
allowing you to replace it with a different component with equivalentfunctionality.

Module:a component that is defined at the programming language level.
For example, methods, classes and packages are modules in Java.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 36 of 75

e

System :a logical entity, having a set of definable responsibilities or objectives, and consisting of
hardware, software or both.

Subsystem:a system that is part of a larger system, and which has a definite interface. Java uses
packages to implement subsystems ;

Top-down versus bottom-up design
In top-down design, you start with the very high-level structure of the system. You then
gradually work down towards detailed decisions about low-level constructs.

The inverse approach, bottom-up design, involves first making decisions about reusable low-
level utilities and then deciding how these will be put together to create high-l
A mix of top-down and bottom-up design is normally used.

vel constructs.

Special types of design
There are many different aspects of software design, including:

Architecture design: the division of software into subsystems and components, as well as the
process of deciding how these
determining their interfaces.

will be connected and how theywill interact, are including

Class design: the design of the various features of classes such as associations, attributes,
interactions and states.

User interface design.

Database design: the design of how data is persistently stored so that it may be accessed by
many programs and users, over an indefinite period of time.
Algorithm design: the design of computational mechanisms.
Protocol design: the design of communications protocols – the languages with which processes
communicate with each other over a network.

Principles leading to good design
Some overall goals we want to achieve when doing good design are:

Increasing profit by reducing cost and increasing revenue. For most organizations, this is the
central objective. However, there are a number of ways to reduce cost, and also many different
ways to increase the revenue generated by software.

Ensuring that we actually conform to the requirements, thus solving the customers’
problems.

Accelerating development. This helps reduce short-term costs, helps ensure thesoftware
reaches the market soon enough to compete effectively, and may be essential to meet some
deadline faced by the customer.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 37 of 75

s

e

Increasing qualities such as usability, efficiency, reliability, maintainability and
reusability. These can help reduce costs and also increase revenues.

Design Principle 1: Divide and conquer
Trying to deal with something big all at once is normally much harder than dealing with

a series of smaller things. We have already seen how the process of development is divided into
activities such as requirements gathering, design and testing.

Dividing a software system into pieces has many advantages:
Separate people can work on each part. The original development work can th
in parallel.

refore be done

An individual software engineer can specialize in his or her component, becoming expert at it. It
is possible for someone to know everything about a small part of a system, but it is notpossible
to know everything about an entiresystem.

Each individual component is smaller, and therefore easier to understand.
When one part needs to be replaced or changed, this can hopefully be donewithout having to
replace or extensively change other parts.

Opportunities arise for making the components reusable.
A software system can be divided in many ways:

 A distributed system is divided up into clients and servers.
 A system is divided up into subsystems.
 A subsystem can be divided up into one or more packages.
 A package is composed of classes.
 A class is composed of methods.

Design Principle 2: Increase cohesion where possible
The cohesion principle is an extension of the divide and conquer principle –divide and

conquer simply says to divide things up into smaller chunks. Cohesion says to do it intelligently:
yes, divide things up, but keep things together that belong together. A subsystem or module
has high cohesion if it keeps together things that are related to each other, and keeps out other
things. This makes the system as a whole easier to understand and change.

Listed below are several important types of cohesion that designers should tryto
achieve.

Functional Facilities are kept together that perform only one computation with no side
effects. Everything else is kept out

Layer Related services are kept together, everything else is kept out, and there is a
strict hierarchy in which higher-levelservices can access only lower-level
services. Accessing a service may result in side effects

Communicational Facilities for operating on the same data are kept together, and everything

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 38 of 75

a

u

Functional cohesion
The following are some examples of modules that can be designed to befunctionally cohesive:
A module that computes a mathematical function such as sine or cosine.
A module that takes a set of equations and solves for the unknowns.
A module in a chemical factory that takes data from various monitoringdevices and computes
the yield of a chemical process as a percentage of thetheoretical maximum.

There are several reasons why it is good to achieve functional cohesion:
It is easier to understand a module when you know that all it does is generateonespecific
output and has no side effects.
Due to its lack of side effects, a functionally cohesive module is much morelikely to be
reusable.
It is easier to replace a function
same computation.

lly cohesive module with another thatperforms the

Related utilities are kept together, when there is no way to group
them using a stronger form of cohesion

Utility

Procedures used in the same general phase of execution, such as initialization
or termination, are kept together. Everything else is kept o t

Temporal

A set of procedures, which are called one after another, is kept together.
Everything else is kept out

Procedural

A set of procedures, which work in sequence to perform some computation,
is kept together. Output from one is input to the next. Everything else is kept
out

Sequential

else is kept out. Good classes exhibit communicational cohesion

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 39 of 75

h

u

Layer cohesion
To have proper layer cohesion, the layers must form a hierarchy. Higher layers can

access services of lower layers, but it is essential that the lower layers do not access higher
layers.

The set of related services that could form a layer might include:
Services for computation;
Services s for transmission of messages or data;
Services for storage of data;
Services for managing security;
Services for interacting with sers;
Services to access the operating system;
Services to interact with the hardware.

Advantages of layer cohesion are:
You can replace one or more of the top-level layers without having any impacton the lower-

level layers.
You know you can replace a lower layer with an equivalent layer, because youknow it does

not access higher layers.

Communicational cohesion
This is achieved when modules that access or manipulate certain data are kepttogether

(e.g. in the same class) – and everything else is kept out.

A class would have good communicational cohesion if
- all the system’s facilities for storing and manipulating its data are contained in this class.
- the class does not do anything other than manage its data.

Main advantage:

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 40 of 75

d

When you need to make changes to the data, you find all the code in one place

Sequential cohesion
Procedures, in which one procedure provides input to the next, are kept together and

everything else is kept out

Example of sequential cohesion, imagine a text recognition subsystem. One module is given a
bitmap as input and divides it up into areas that appear to contain separate characters. The
output from this is fed into a second modulethat recognizes shapes and determines the
probability that each area corresponds to a particular character. The output from that is fed
into a third module that uses the probabilities to determine the sequence of words embedded
in the input. If all these modules were grouped together, then the result woul
cohesion.

have sequential

Procedural cohesion
This is achieved when you keep together several procedures that are used one after

another, even though one does not necessarily provide input to the next. It is therefore weaker
than sequential cohesion.

Temporal cohesion
This is achieved when

operations that are performed during the same phase ofthe

execution of the program are kept together, and everything else is kept out. This is weaker than
procedural cohesion

Utility cohesion
This is achieved when related utilities that cannot be logically placed in other cohesive

units are kept together. A utility is a procedure or class that has wide applicability to many
different subsystems and is designed to be reusable.

Design Principle 3: Reduce coupling where possible
Coupling occurs when there are interdependencies between one module andanother.

In general, the more tightly coupled a set of modules is, the harder it is to understand and,
hence, change the system. Two reasons for this are:

When interdependencies exist, changes in one place will require changes somewhere
else. Requiring changes to be made in more than one place is problematic since it is time-
consuming to find the different places that need changing

A network of interdependencies makes it hard to see at a glance how somecomponent
works.

Coupling type Comments

Content A component surreptitiously modifying internal data of another
component. Always avoid this

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 41 of 75

o

y

Common

Control

The use of global variables. Severely restrict this

One procedure directly controlling another using a flag. Reduce this using
polymorphism

Stamp One of the argument types of a method is one of you application classes. If
it simplifies the system, replace each such argument with a simpler
argument (an interface, super class or a few simple data items)

Data The use of method arguments that are simple data.Ifpossible, reduce the
number of arguments

Routine call A routine calling another. Reduce the total number of separate calls by
encapsulating repeated sequences

Type use

Inclusion/ import

The use of a globally defined data type. Use simpler types where possible
(super classes or interfaces)

Including a file or importing a package. Eliminate when not necessary

External A dependency exists to elements outside the scope of the system, such as
the operating system, shared libraries or the hardware. Reduce the total
number of places that have dependencies on such external elements

Design Principle 4: Keep the level of abstraction as high as possible
You should ensure that our designs allow you to hide or defer consideration of details,

thus reducing complexity. The general term given to this property of designs is abstraction.
Abstractions are needed because the human brain can process only a limited amount of
information at any one time.

Abstractions work by allowing you to understand the essence of somethingand make

important decisions without kn
ways:

wing unnecessary details. Thedetails can be provided in several

At a later stage of design. For example, when creating class diagrams, you ofteninitially
leave out the data types of attributes, and you do not show theimplementation details of
associations.

By the compiler or run-time system. For example, dynamic binding takes careof which
methods will run.

By the use of default values. For example, a draw operation that always makesthe
background white unless some explicit action is taken to change thedefault.

Design Principle 5: Increase reusability where possible

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 42 of 75

n
r

a

a

e

There are two complementary principles that relate to reuse; the first is to designforreuse, and
the second is to design with reuse.

Important strategies for increasing reusability are as follows:
Generalize your design as much as possible.
Follow the preceding three design principles.
Design your system to contain hooks. A hook is an aspect of the design deliberately added
to allow other designers to add additional functionality.
Simplify your design as much as possible.

Design Principle 6: Reuse existing designs and code where possible
Designing with reuse is complementary to designing for reusability. Activelyreusing

designs or code allows you to take advantage of the investment you orothers have made in
reusable components. Cloning should normally not be seen as an effectiv form of reuse.
Cloning involves copying code from one place to another;

Design Principle 7: Design for flexibility
Designing for flexibility (also known as adaptability) means actively anticipatingchanges

that a design may have to undergo in the future and preparing for them. Such changes might
include changes in implementation

Ways to build flexibility into a design include:
Reducing coupling and increasing cohesion.
Creating abstractions.
Not hard-coding anything.
Leaving all options open.
Using reusable code and m king code reusable.

Design Principle 8: Anticipate obsolescence
Anticipating obsolesce ce means planning forevolution of the technology or

environment so that the softwa e will continue torun or can be easily changed.

The following are some rules th t designers can use to better anticipateobsolescence:
Avoid using early releases of technology.
Avoid using software libraries that are specific to particular environments.
Avoid using undocumented features or little-used features of software libraries.
Avoid using reusable software or special hardware from smaller companies, or
from those that are less likely to provide long-term support.
Use standard languages and technologies that are supported by multiplevendors.

Design Principle 9: Design for portability
Designing for portability shares many things in common with anticipatingobsolescence,

although the objective is different. Anticipating obsolescence has, as its primary objective, the
survival of the software. Design for portability has, as its prime objective, the ability to have the
software run on as many platforms as possible, although sometimes this
necessity for survival.

might also be a

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 43 of 75

e

o

r

Design Principle 10: Design for testability
During design you can take steps to make testing easier. Testing can be performed both

manually and automatically. Automatic testing involves writing a program that will provide
various inputs to the system in order to test it thoroughly. Therefore it pays to design a system
so that automatic testing is made easy.

Design Principle 11: Design defensively
You should never trust how others will try to use a component you are designing. Just

like automobile drivers are taught not to trust other drivers, and therefore to drive defensively,
a software designer should not trust other designers or programmers, and so should design
defensively.

Design by contract is a technique that allows you to design defensively in an efficient
and systematic way. The key idea behind design by contract is that eachmeth
contract with its callers. The contract has a set of assertions that state:

d has an explicit

Whatpreconditions the called method requires to be true when it sta tsexecuting. The
caller has the responsibility to make these preconditions truebefore making the call.

Whatpost conditions the called method agrees to ensure are true when itfinishes
executing. The called method has the responsibility to make thesepost conditions true, before
returning.

Whatinvariants the called method agrees will not change as it executes.

Techniques for making good design decisions
Two approaches that will help you to make decisions.

1) Using priorities and objectives to decide among alternatives
Before you start design, you should have established priorities and objectives for various

aspects of quality. An objective is a measurable value you wish to attain. A priority states which
qualities override others in those cases where you must make compromises. The qualities to
consider when setting prioriti s and objectives include memory efficiency, CPU efficiency,
maintainability, portability and usability. In general, the priorities and objectives should be
obtained from the non-functional requirements.

In order to make a design decision, you can perform the following steps:

Step 1 List and describe the alternatives for the design decision.

Step 2 List the advantages and disadvantages of each alternative with respect to yourobjectives
and priorities.

Step 3 Determine whether any of the alternatives prevents you from meeting one ormore
of the objectives.

Step 4 Choose the alternative that helps you to best meet your objectives.

Step 5 Adjust your priorities for subsequent decision making.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 44 of 75

e

a

2) Using cost–benefit analysis to choose among alternatives
An important consideration when you do design is finding ways to reduce costs and

increase benefits. To estimate the costs of a new feature or design alternative, you should add
up estimates of the following:

The incremental cost of doing the software engineering work, including ongoing
maintenance for the life of the system.The incremental costs of any development technology
that you will have to buy such as programming languages, reusable components, databases etc.

The incremental costs that end-users and product support personnel will experience.To
estimate the benefits of a new feature or design alternative, you should add up the
following:The incremental software engineering time saved. The incremental benefits
measured in terms of either increased sales or elsefinancial benefit to users.

Software architecture
Definition:

Software architecture is the process of designing the global organization of asoftware
system, including dividing software into subsystems, deciding how these will interact, and
determining their interfaces.

The importance of developing an architectural model
Software engineers discuss all aspects of a system’s design in terms of the architectural

model. Decisions made while this model is being developed therefore have a profound impact
on the rest of the design process. The architectural model is the core of the design; therefore all
software engineers need to understand it.

There are four main reasons why you need to develop an architectural model:
To enable everyone to bett r understand the system.
To allow people to work on individual pieces of the system in isolation.
To prepare for extension of the system.
To facilitate reuse and reus bility.

Contents of a good architectural model
A system’s architecture will often be expressed in terms of several different views. These can

include:
The logical breakdown into subsystems. This is often shown using package diagrams,

which we will describe later.
described.

The interfaces among the subsystems must also be carefully

The dynamics of the interaction among components at run time, perhaps expressed
using interaction or activity diagrams.

The data that will be shared among the subsystems, typically expressed using class
diagrams.

The components that will exist at run time, and the machines or devices on whichthey
will be located. This information can be expressed using component and deployment diagrams.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 45 of 75

u
n

To ensure the maintainability and reliability of a system, an architecturalmodel must be
designed to be stable. Being stable means that the new featurescan be easily added with only
small changes to the architecture.

How to develop an architectural model
The basis for the architectural model will be the system domain model and the use

cases. The first draft of the architectural model should be created at the same time as these.
These give the architect an idea about which components will be needed and how they will
interact. At the same time, the early architecture will give use case modelers guidance about
the steps the user will need to perform.
The following are some steps that you can use iteratively as you refine the architecture.

1. Start by sketching an outline of the architecture, based on the principalrequirements,
including the domain model and use cases.

2. Refine the architecture by identifying the main ways in which the componentswill
interact, and by identifying the interfaces among them.

3. Consider each use case, adjusting the architecture to make it realizable.
4. Mature the architecture as you define the final class diagrams and interactiondiagrams.

Describing an architecture using UML
All UML diagrams can be useful to describe aspects of the architectural model. Three

other types of UML diagram are particularly important for architecture modeling: package
diagrams, component diagrams and deployment diagrams.

Packages
Breaking a large system into subsystems is a fundamental principle of

softwaredevelopment. A good decomposition helps make the system more understandable and
therefore facilitates its maintai
that are grouped together beca

ability. In UML, a package is a collection of modeling elements
se they are logically related.

Component diagrams
A component diagram

shows how a system’s components – that

is, the physical

elements such as files, executables, etc. – relate to each other. The UML symbolfor a
component is a box with a little ‘plug’ symbol in the top-right corner.
Various relationships can exist among components, for example:

A component may execute another component, or a method in the othercomponent.
A component may generate another component.
Two components may communicate with each other using a network.

The difference is that package diagrams show logical groupings of design elements,
whereas component diagrams show relationships among types of physical components.

Deployment diagrams
A deployment diagram describes the hardware where various instances of components

reside at run time.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 46 of 75

w

Architectural patterns
We present several of the most important architectural patterns, which are also often

called architectural styles.

The Multi-Layer architectural pattern
In a layered system, each layer communicates only with the layer immediately below it.

Each layer has a well-defined interface used by the layer immediately above.
- The higher layer sees the lower layer as a set of services.

A complex system can be built by superposing layers at increasing levels of abstraction.
- It is important to have a separate layer for the UI.
- Layers immediately below the UI layer provide the application functions determined by

the use-cases.
- Bottom layers provide general services.
- e.g. network communication, database access

Design Principles:
1. Divide and conquer: The layers can be independently designed.
2. Increase cohesion: Well-designed layers have layer cohesion.
3. Reduce coupling: Well-designed lower layers do not know about the higher layers and

the only connection bet een layers is through the API.
4. Increase abstraction: you do not need to know the details of how the lower layers are

implemented.
5. Increase reusability: The lower layers can often be designed generically
6. Increase reuse: You can often reuse layers built by others that provide the services you

need.
7. Increase flexibility: you can add new facilities built on lower-level services, or replace

higher-level layers.
8. Anticipate obsolescence: By isolating components in separate layers, the system

becomes more resistant to obsolescence.
9. Design for portability: All the dependent facilities can be isolated in one of the lower

layers.
10. Design for testability: Layers can be tested independently.
11. Design defensively: The APIs of layers are natural places to build in rigorous assertion-

checking.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 47 of 75

h

The Client–Server and other distributed architectural patterns
There is at least one component that has the role of server, waiting for and then

handling connections.
There is at least one component that has the role of client, initiating connections in

order to obtain some service.
A further extension is the Peer-to-Peer pattern. —A system composed of various

software
components that are distributed over several hosts.

Its basic principles are: a) there is at least one component that has t e role of server,
waiting for and then handling connections, and b) there is at least onecomponent that has the
role of client, initiating connections in order to obtainsome service.

An important variant of the client–server architecture is the three-tier model under
which a server communicates with both a client (usually through the Internet) and a database
server (usually within an intranet, for security reasons).

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 48 of 75

c

n

The server acts as a client when accessing the database server.

Distributed architectures help you adhere to design principles such as thefollowing:
1. Divide and conquer. Dividing the system into client and server processes is a very

strong way to divide the system. Each can be separately developed.
2. Increase cohesion. The server can provide a cohesive service to clients
3. Reduce coupling. There is usually only one communication channel between

distributed components, and the data being passed is usually simple messages.
4. Increase abstraction. Separate distributed components are often good abstractions. For

example, you do not need to understand the details of how a server operates.
5. Increase reuse. It is often possible to find suitable frameworks on which to build good

distributed systems (e.g. OCSF). However, reusability may not be high since client–
server systems are ofte

6. Design for flexibility.
adding extra servers or

very application specific.
Distributed systems can often be easily
lients.

reconfigured by

7. Design for portability.
port the server.

You can write clients for new platforms without having to

8. Design for testability. You can test clients and servers independently.
9. Design defensively. You can put rigorous checks in the message handling code to ensure

that no matter what messages you receive.

The Broker architectural pattern
The idea of the Broker architectural pattern is to distribute aspects of the software

system transparently to different nodes. Using the Broker architecture, an object can call
methods of another object without knowing that this object is remotely located. The use of the
Proxy design pattern can help achieve this goal.

CORBA is a well-known open standard that allows you to build this kind of architecture – it
stands for Common Object Request Broker Architecture.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 49 of 75

The Broker pattern is particularly useful in helping you follow these designprinciples:
1. Divide and conquer. The remote objects can be independently designed.
2. Increase reusability. It is often possible to design the remote objects so that other

systems can use them too.
3. Increase reuse. You may be able to reuse remote objects that others have created.
4. Design for flexibility. The broker objects can be updated as required, or you can redirect

the proxy to communicate with a different remote object.
5. Design for portability. You can write clients for new platforms while still accessing

brokers and remote objects on other platforms.
6. Design defensively. You can provide careful assertion checking in the remote objects

The Transaction Processing architectural pattern
A process reads a series of inputs one by one.

 Each input describes a transaction – a command that typically some change to
the data stored by the system

 There is a transaction dispatcher component that decides what to do with each
transaction

 This dispatches a procedure call or message to one of a series of component that
will handle the transaction

1. Divide and conquer. The transaction handlers are suitable system divisions that you can
give to separate software engineers.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 50 of 75

s

2. Increase cohesion. Transaction handlers are naturally cohesive units. They may exhibit
functional, sequential or procedural cohesion. However, they tend
communicational cohesion.

not to exhibit

3. Reduce coupling. Separating the dispatcher from the handlers tends to reduce coupling.
However, you have to be careful that the coupling among the transaction handlers is
kept under control.

4. Design for flexibility. You can readily add new transaction handlers.
5. Design defensively. You can add assertion checking in each transaction handler and/or in

the dispatcher.

The Pipe-and-Filter architectural pattern
The Pipe-and-Filter architectural pattern is also often called the

architectural pattern. It works as follows. A stream of data, in a relatively

transformational
imple format, is

passed through a series of processes, each of which transforms it in some way. The series of
processes is called a pipeline. Data is constantly fed into the pipeline; the processes work
concurrently (conceptually at least) so that data is also constantly emerging from the pipeline.

A pipe-and-filter system provides fulfills the following principles:
1. Divide and conquer. The separate processes can be independently designed.
2. Increase cohesion. The processes generally have functional cohesion.
3. Reduce coupling. The processes have only one input and one output, normally using a

standard format, therefore coupling is very low. Type use coupling can become an issue
if the format of the data needs to change.

4. Increase abstraction. The pipeline components are often good abstractions, hiding their
internal details.

5. Increase reusability. The processes can often be used in many different contexts.
6. Increase reuse. It is often possible to find reusable components to insert into a pipeline.
7. Design for flexibility. There are several ways in which the system is flexible:

Almost all the components could be removed.
Components could be replaced with different implementations.
New components could be inserted, for example to perform encryption.
Certain components could be reordered.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 51 of 75

c

The encoders for microphone input and for ambient noise could be instances of the
same component type.

8. Design for testability. It is normally easy to test the individual processes.
9. Design defensively. You can check the inputs of each component, or you can use design

by contract, writing careful preconditions and post conditions for each component.

The Model–View–Controller (MVC) architectural pattern
Model–View–Controller, or MVC, is an architectural pattern used to help separate the

user interface layer from other parts of the system. Not only does MVC help enforce layer
cohesion of the user interface layer, but it also helps reduce the coupling between that layer
and the rest of the system, as well as between different aspects of the UI itself. The MVC
pattern separates the functional layer of the system (the model) from two aspects of the user
interface, the view and the controller.

The MVC architectural pattern allows us to adhere to the following design prin iples:
1. Divide and conquer. The three components can be somewhat independently designed.
2. Increase cohesion. The components have stronger layer cohesion than if the view and

controller were together in a single UI layer.
3. Reduce coupling. The communication channels between the three

minimal and easy to find.
4. Increase reuse. The view and controller normally make extensive

components are

use of reusable
components for various kinds of UI controls. The UI, however will become application
specific, therefore it will not be easily reusable.

5. Design for flexibility. It is usually quite easy to change the UI by changing the view, the
controller, or both.

6. Design for testability. You can test the application separately from the UI.

Writing a good design document
Design documents serve two main purposes.

Firstly, they help you, as a designer or a design team, to make good design decisions.
The process of writing down your design helps you to think more clearly about it and to find
flaws in it.

Secondly, they help you communicate the design to others.

 Design documents as an aid to making better designs

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 52 of 75

a

m

m

 Design documents help you, as a designer, because they force you to be explicit and to
consider the important issues before starting implementation. They also allow a group
of people to review the design and therefore to improve it.

 There has been a tendency among software developers to omit design documentation
or to document the design only after it is complete.

 Design documents as a means of communication when writing anything, it is important
to know the audience for your work.

Design documents are used to communicate with three groups of individuals. Ingeneral;
you can expect most documents to be read by all three groups:
Those who will be implementing the design, that is, the programmers
Those who will need, in the future, to modify the design
Those who need to create systems or subsystems that interface with the systembeing designed.

Contents of a design document
We suggest that a design document should contain the following infor

ation.

A. Purpose. Specify what system or part of the system this design documentdescribes
B. General priorities. Describe the priorities used to guide the design process.
C. Outline of the design. Give a high-level description of the design that allowsthe reader

to get a general feeling for it quickly.
D. Major design issues. Discuss the important issues that had to be resolved.
E. Details of the design. Give any other details the reader will need to know that have not

yet been mentioned.

At the same time, remember that there is no point writinginformation that would never
be read because the reader already knows it or caneasily find it from some other source. In
particular:

Avoid documenting information that would be readily obvious to a skilledprogrammer
or designer.

Avoid writing details in
the code.

design document that would be better placed ascomments in

Avoidwriting details that can be extracted automatically from the code, such asthe list of
public methods.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 53 of 75

r

h

UNIT - V
TESTING AND INSPECTING TO ENSURE HIGH QUALITY

Basic definitions
Definition: a failure is an unacceptable behavior exhibited by a system.
Definition: a defect is a flaw in any aspect of the system including the requirements, the design
and the code, that contributes, or may potentially contribute, to the occurrence of one or more
failures. A defect is also known as a fault.

Definition: an error is a slip-up or inappropriate decision by a software developer that leads to
the introduction of a defect into the system.
Effective and efficient testing
Testing is the processes of deliberately trying to cause failures in a system in orderto detect any
defects that might be present. As with all engineering activities, efficiency and effectiveness are
both important.

To test effectively, you must use a strategy that uncovers as many defects as possible.
To test efficiently, you must find the largest possible number of defects using the fewest
possible tests. An effective and efficient testing strategy is often called a high-yield strategy.

Black-box and glass-box testing
Most of the time, testers treat a system as a black box. This means they providethe system with
inputs and observe the outputs, but they cannot see what isgoing on inside. In particular, they
can see neither the source code, the internaldata, nor any of the design
describing the system’s internals.

documentation

An alternative approach to testing is to treat the system as a glass box. In glass boxtesting, the
tester can examine the design documents and the code, as wellas observe at run time the steps
taken by algorithms and their internal data.

Glass-box testing is widely refer ed to as white-box testing orstructural testing;
Once you have a flow graph you must then choose from the followingstrategies for glass-box
testing:
Covering all possible paths. T is is infeasible in graphs with loops since therewould be an
infinite number of paths (i.e. repeatedly looping).
Covering all possible edges. This is probably the most efficient strategy. Youdevise a sufficient
set of tests to make sure that each of the outgoing edges of allnodes is taken.
Covering all nodes. This is a less exhaustive and therefore less effectivestrategy.

Testing is like detective work .The job of the tester has certain similarities with that of the
detective:

A detective must try to understand the criminal mind. Similarly, the testermust try to
understand how programmers, designers and users think, so as tobetter find defects.

Detective work is painstaking. The detective must not leave anythinguncovered, and
must be suspicious of everything. Similar suspicion andattention to detail are the hallmark of an
effective tester.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 54 of 75

m

Equivalence classes: a strategy for choosing what to testin order to test efficiently, you should
divide the possible inputsinto groups that you believe will be treated similarly by reasonable
algorithms. Such groups are called equivalence classes. A tester needs only torun one test per
equivalence class, using a representative member of thatequivalence class as input.

Combinations of equivalence classes
To decide how to divide this system into equivalence classes for testing. You are told that the
user can enter the following data (ex: land vehicles)

1. Whether the manufacturers give data about the vehicle in metric or traditional
(Imperial or US) units.
2. Maximum speed, an integer ranging from 1 to 750 km/h or 1 to 500

equivalence classes: [−∝ ..0], [1..500], [501..750], [751..∝]).
ph (four

3. Type of fuel, one of a set of 10 possible strings that the user explicitly types
4. Average fuel efficiency, a fixed-point value with one decimal place, ranging
from 1 to 240 L/100 km or 1 to 240 mpg (three equivalence classes).
5. Time to accelerate to 100 km/h or 60 mph. This is a fixed-point value with one
decimal place, ranging from 1 to 100s (three equivalence classes).
6. Range, an integer from 1 to 5000 km or 1 to 3000 miles (four equivalenceclasses:

[−∝ ..0], [1..3000], [3001..5000], [5001..∝]).

The set of equivalence classes for the system as a whole is the set of all possible
combinations of inputs. Most systems have many distinct inputs; the total number of system
equivalence classes can become very large. This is called a combinatorial explosion of the space
of required tests.

Testing at boundaries of equivalence classesmore errors in software occur at the
boundaries of equivalence classes than inthe ‘middle’. Therefore we should expand the idea of
equivalence class testing tospecifically test values at the extremes of each equivalence class.

Detecting specific categories of defects
As mentioned earlier, a tester must act like a detective, trying to uncover anydefects

that other software engineers might have introduced. This means notonly testing at
equivalence classes and their boundaries, but also designing teststhat explicitly try to catch a
range of specific types of defects that commonlyoccur.

Defects in ordinary algorithms
The following subsections list some of the most common kinds of defects found in all

types of algorithms.

Incorrect logical conditions
Defects

The logical conditions that govern looping and if-then-else statements are wrongly
formulated. reversing comparison operators (e.g. > becomes <), or mishandling the equality
case (e.g. >= becomes > or vice versa).

Testing strategy

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 55 of 75

c
c

Use equivalence class and boundary testing. To compute the equivalence classes,
consider each variable used in the logical condition as an input.

Ex:
if(!landingGearDeployed&&
(min(now-takeoffTime,estLandTime-now))<
(visibility< 1000 ? 180 :120) ||
relativeAltitude<
(visibility< 1000 ? 2500 :2000)
)
{
throw new LandingGearException();
}
Unfortunately, this type of bad style that gives rise to defects is rather a
There is at least one critical defect in this code – see if you canunderstand the

ommonpractice.
ode and find the

defect. It is likely that a programmer might notnotice it due to the nested parentheses and the
overall complexity of thecondition.

Performing a calculation in the wrong part of a control construct
Defect

The program performs an action when it should not, or does not perform anaction when
it should.

Testing strategies
Design tests that execute each loop zero times, exactly once, and more than once. Also,

ensure that anything ‘bad’ or ‘unusual’ that could happen while looping ismade to occur on the
first iteration and the last iteration. This kind of defect is not always reliably caught using black-
box testing; insuch cases glass-box testing or inspections may be more effective.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 56 of 75

o

g
o

Examples
The following Java code illustrates a typical case:
while(j<maximum)
{
k=someOperation(j);
j++;
}
if(k==-1) signalAnError();

In this case, signalAnError was supposed to be called if any of the calls tosomeOperation
resulted in a value of -1. Unfortunately, here it can only be calledfollowin
someOperation. The final line should therefore have been placed inside a l
defect may be missed if the loop normally executes only once.

the last call to
op. This kind of

Not terminating a loop or recursion
Defect testing

A loop or a recursion does not always terminate, that is, it is infinite’.
Strategies

Although the programmer should have analyzed all loops or recursions toensure they
reach a terminating case, a tester should nevertheless assume that the programmer has made
an error.

Example
Imagine that a program is supposed to count the total number of atoms in acomplex

organic molecule. It might do this by starting at an arbitrary moleculeand traversing it from
bond to bond, walking down each branch.

Not setting up the correct prec
Defect

nditions for an algorithm

When specifying an algorithm, one specifies preconditions that state what must be true
before the algorithm should be executed. A defect would exist if a program proceeds to do its
work, even when the preconditions are not satisfied.

Testing strategy
Run test cases in which each precondition is not satisfied. Preferably its input values are

just beyond what the algorithm can accept.

Example
In the organic chemistry program, a precondition might be that the input is a single

molecule. The tester should therefore try to test by giving as input two disjoint molecules.

Not handling null conditions

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 57 of 75

c

Defect
It is defect when a program behaves abnormally when a null condition is encountered.

In these situations, the program should ‘do nothing, gracefully’.

Testing strategy
Determine all possible

inappropriate behavior.

null conditions and run test cases that would highlight any

Examples
Imagine you want to calculate the average sales of members of ea h division in an

organization. But what if some division has no members?

As a related example, imagine you are asked to find the salesperson who has sold the
most in the above division. In attempting to perform this calculation, an algorithm might loop
zero times and hence never actually set the maximum value, or leave it set to some arbitrary,
but incorrect value.

Not handling singleton or non-singleton conditions
Defect

A singleton condition is like a null condition. It occurs when there is normally more than
one of something, but sometimes there is only one. A non-singleton condition is the inverse –
there is almost always one of something, but occasionally there can be more than one. Defects
occur when the unusual case is not properly handled.

Testing strategy
Brainstorm to determine unusual conditions and run appropriate tests.

Examples
The following are two examples of these conditions:

Imagine that in a web browser you can set up a series of ‘personal profiles’. Each user of
the computer has their own personal profile that includes their name, bookmarks list, and
‘cookies’. Imagine you created a personal profile under your name, ‘John Smith’. Later on you
accidentally created another profile, using the same name. Then you decided to get rid of one
of the two profiles; you therefore selected a profile and issued the ‘delete’ command.
Unfortunately, the deletion operation might assume that there can be only one profile using a
given name, so that it simply traverses the list of profiles, deletingall the profiles by that name.
The result? Both of the profiles are deleted. Anticipating this kind of defect, a tester can enter
several identically-named profiles and make sure that only one is deleted.

Imagine that a program is designed to randomly assign members of a sports club into
pairs who will play against each other. Does the program do something intelligent with the left-
over person when there is an odd number of a member? And what happens if there is only one
member?

Off-by-one errors
Defect

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 58 of 75

a

A program inappropriately adds or subtracts 1, or inappropriately loops one too many
times or one too few times. This is a particularly common type of defect.

Testing strategy
Develop boundary tests

in which you verify that the program computes the correct

numerical answer, or performs the correct number of iterations. Since graphical applications
are common places where off-by-one errors are found, study the display to see if objects
slightly overlap or have slight gaps.

Examples
Assuming 0-based indexing, as is the case in Java, then the following loop would always

skip the first element, and loop one too few times.

for (i=1; i<arrayname.length; i++) { /* do something */ }

Operator precedence errors
Defect

An operator precedence error occurs when a programmer omits needed parentheses,
or puts parentheses in the wrong place.

Testing strategy
In software that computes formulae, run tests that anticipate defects such as those

described in the example below.

Example
A program may compute z+(x*y), when it was supposed to compute (z+x)*y. In this case,

the programmer probably wrote z+x*y and forgot that multiplication takes precedence over
addition. If z is normally zero, or all three variables are normally 1, then this defect could
remain hidden. Testing for errors like this therefore means thinking carefully about which
values of x, y and z to use.

Use of inappropriate standard
Defect

lgorithms

An inappropriate standard algorithm is one that is unnecessarily inefficient or has some
other property that is widely recognized as being bad.

Testing strategies
The tester has to know the properties of algorithms and design tests, such as those in

the following examples that will determine whether any undesirable algorithms have been
implemented.

Examples
The following are some bad choices of algorithms that testers should try to detect:
An inefficient sort algorithm. The most classical ‘bad’ choice of algorithm is sorting
using a so-called ‘bubble sort’

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 59 of 75

t

An inefficient search algorithm. Ensure that the search time does not increase
unacceptably as the list gets longer. Also check that the position in the list of the item you
are looking for does not have a noticeable impact on search time.

A non-stable sort. A non-stable sort will take equal elements and sometimes switch
their order after the sorting process.

A search or sort that is case sensitive when it should not be, or vice versa.
The tester should test algorithms with mixed-case data to see if the algorithm behaves as
expected.

Defects in numerical algorithms
Numerical computation defects are a special class of algorithmic defec . They can occur

in any software that performs mathematical calculations, especially calculations involving
floating point values.

Not using enough bits or digits to store maximum values
A system does not use variables that are capable of representing the largestpossible

values that could be stored. When the capacity of a data type is exceeded, an unexpected
exception might be thrown, or else the data may bestored incorrectly.

Testing strategies
Test using very large numbers to ensure that the system has a wide enough margin of

error.

Example
Imagine that you were going to be storing the monthly salary of an employee in a short

integer (whose value ranges up to 32765).

Using insufficient places after the decimal point or too few significant figures
Defects

This problem occurs with floating point or fixed-point values. A floating-point value
might not be ‘wide’ enough to store enough significant figures.

Testing strategies
Perform calculations that involve many significant figures, and large differences in

magnitude. Verify that the calculated results are correct in such cases.

Example
Imagine an investment application that tracks a portfolio of shares. Typical shares are

quoted using three or four significant digits, hence, prices might be$135.5 or $33.16. However,
if a share ‘crashes’ in value for some reason, it might drop to only a few cents. In such a case,
your system might have to record its value as $0.0344. If your system were only able to record
values to two decimal places after the point, then it could not correctly manipulate such stocks.

Ordering operations poorly so that errors build up

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 60 of 75

=

e

Defects
This defect occurs when you do small operations on large floating-point numbers, and

excessive rounding or truncation errors build up.

Testing strategies If a numerical application is designed to work with floating-point numbers
then make sure it works with inputs that vary widely in magnitude, including both large positive
and large negative exponents

Example
Imagine you are adding a large number of small credits to an account. If the account’s

total were in the thousands of dollars, you might always round it to th nearest dollar.
However, in this situation, small transactions of a few cents would never affect the account
balance.

Assuming a floating-point value will be exactly equal to some other value
Defect

If you perform an arithmetic calculation on a floating-point value, then the result will
very rarely be computed exactly. It is therefore a defect to test if floating-point value is exactly
equal to some other value. You should instead test if it is within a small range around that
value.

Testing strategies
Standard boundary testing should detect this type of defect.

Example
The following is at risk of resulting in an infinite loop, since d may never equal
precisely 10.0, but may instead equal 9.99999999999 after 10 iterations.
for (double d = 0.0; d != 10.0; d+=2.0) {...}
The correct expression should have been:
for (double d = 0.0; d < 10.0; d+ 2.0) {...}

Defects in timing and co-ordination: deadlocks, livelocks and critical races
The three most important kinds of timing and co-ordination defects aredeadlocks,

livelocksand critical races.

Deadlock and livelock
Defects

A deadlock is a situation where two or more threads or processes are stopped, waiting
for each other to do something before either can proceed. Since neither can do anything, they
permanently stop each other from proceeding. A classic example of real-life deadlock is the
‘gridlock’ sometimes encountered in busy cities.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 61 of 75

v
r

p

Testing strategies
Deadlocks and livelocks tend to occur as a result of unusual combinations of conditions

that are hard to anticipate or reproduce. It is often most effective to useins ection to detect
such defects, rather than testing alone. If black-box testing is the only possibility, then you can
try some of the following tactics:

Vary the time consumption of different threads by giving them differing amounts of
input, or running them on hardware that varies in speed.

Run a large number of threads concurrently.
Deliberately deny resources to one or more threads (e.g. temporarily cut a network

connection, or make a file unreadable).

Critical races
Defects

A critical race is a defect in which one thread or process can sometimes experience a
failure because another thread or process interferes with the ‘normal’ sequence of events. The
defect is not that the other
interference to occur.

thread tries to do something, but that the system allows

One type of critical race occu s when two processes or threads normally work together to
achieve some outcome; howe
incorrect.

er, if one is sped up or slowed down then the outcome is

A second type of critical race occurs when one thread unexpectedly changes data that is being
operated on by another thread, resulting in incorrect results.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 62 of 75

n

Designers can prevent critical races by using various mechanisms that allow data items

to be locked so that they cannot be accessed by other threads when they are not ready. One
widely used locking mechanism is called a semaphore.

Testing strategies
Testing for critical races is done using the same strategies as testing for deadlocks and

livelocks. Once again, inspection is often a better solution. One possible, although invasive,
strategy is to deliberately slow down one of the threads by adding a call to the sleep method.

Managing the software process
What is project management?

Project management e compasses all the activities needed to plan and execute a
project. The following are specific activities often done by a project manager:

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 63 of 75

Deciding what needs to be done
Finding customers; working with customers to determine their problem and the scope

of the project; prioritizing the work; selecting the overall processes that will be followed, and
negotiating contracts.

Estimating costs
The most important aspect of this is estimating the amount of elapsed time and effort

that will be required to complete the project.

Ensuring there are suitable people to undertake the project
This includesfinding people, and ensuring that people have appropriate training. It can

also include firing people who are not performing adequately.

Defining responsibilities
Determining how people will work together in teams and who will be responsible for

what

Scheduling
Determining the sequence of tasks, plus setting deadlines for when tasks must be

complete. Major deadlines are called milestones.

Making arrangements for the work
Initiating the paperwork involved in hiring or subcontracting; setting up training courses;

finding office space; ensuring that hardware and software is available; ensuring that people
have the requisite security clearance, etc.

Directing
Telling subordinates and contractors what to do. Many of the other activities in this list

involve making decisions; but acting on those decisions by ordering people to do things is a
distinct activity. Directing is not as simple as issuing orders – you have to get people to commit
to deliver what they promise.

Being a technical leader
Giving advice about engineering problems; helping people solve problems by leading

discussions; pointing people to appropriate sources of information; acting as a mentor, and
making high-level decisions about requirements and design.

Reviewing and approving decisions made by others
In certain types of projects, the project manager will have to take the ultimate legal

responsibility for declaring that proper engineering practice has been followed, and that the
manager believes the resulting system will be safe. However, a certain amount of reviewing and
approving is a part of every project.

Building morale and supporting staff

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 64 of 75

Helping resolve interpersonalconflicts; ensuring that people feel rewarded, respected
and motivated; giving people feedback to help them improve their work; and ensuring that
people always have somebody to talk to about problems.

Monitoring and controlling
Finding out what is going on, determining how the plans need to change, and taking

action to keep the project on track.

Coordinating the work with managers of other projects

Reporting
Telling customers and higher-level managers what they need and want to know.

Continually striving to improve the process.

Software process models
Software process models are general approaches for organizing a project into activities.

The models should be seen as aids to thinking.

In the opportunistic approach, developers keep on modifying the software until they or
their users are satisfied. This approach has several important problems:

The system might satisfy certain user needs, but reaching a high level of user
satisfaction will require many changes.

The design of software deteriorates faster if it is not well designed.

Since there are no plans, there is nothing to aim towards. Since there is nothing to aim
towards, you can never know if you are doing well or poorly. Therefore there is no control of
costs or schedule in an opportunistic project.

Many undetected defects therefore remain, giving rise to never-ending changes that
make the system worse and worse.

The above problems make the cost of developing and maintaining software very high.

The waterfall model

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 65 of 75

The waterfall model is a significant improvement over the opportunistic approach. It is a
classic way of looking at software engineering that accounts for the importance of
requirements, design and quality assurance. The model is so named because it tend to look like
cascading waterfalls.

It has some limitations and, if followed too strictly, can lead to the following types of
problems:

The model implies that you should attempt to complete the entire specificationbefore

moving on to the design, and the entire design before moving on to implementation.

The waterfall model makes no allowances for prototyping and implies that you can get the
requirements right by simply writing them down and reviewing them.

The model implies that once the product is finished, everything else is maintenance.

The phased-release model
The phased-release model of software development rectifies some, but not all, of the

problems of the waterfall model. The most important change is that it introduces the notion of
incremental development.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 66 of 75

The spiral model
The spiral model, as shown in Figure 11.4, is another view of incremental development

that explicitly embraces prototyping and an iterative approach to software development. This
model takes the position that you should start to develop software by developing a small
prototype (innermost loop of the spiral).
This first prototype follows a mini-waterfall process, but is very quickly developed and serves
primarily to gather requirements.

The spiral model also adds the notion of risk analysis to process modeling. When
following the spiral model, a project undergoes a large number of cycles. The cycling only ends
when the system is finally retired.

The evolutionary model

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 67 of 75

e

The evolutionary model (Figure 11.5) shows software development as a series ofhills,
each representing a separate loop of the spiral. This is a third way of thinking about incremental
development. This model shows two things that are not always clear from the spiral model.

First, it shows that loops, or releases, tend to overlap each other. As testing
andpreparations for deployment of one release are under way, planning for the next release
has already started.

Secondly, the evolutionary model makes it clear that development work tends to reach
a peak, at around the time of the deadline for completion of implementation.

Finally, the model shows that each prototype or release can take diff
time to deliver, and can take differing amounts of effort.

rent amounts of

The concurrent engineering model
The concurrent engineering model (Figure 11.6) explicitly accounts for the divide and

conquer principle. Each team
evolutionary approach.

works on its own component, typically following a spiral or

Choosing a process model
When planning a particular project, the important thing to recognize is that you can

combine the features of the models that apply best to your current project.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 68 of 75

m

c

a

From the waterfall model, you will always incorporate the notion of stages,From the
phased-release model, you can incorporate the notion of doing some initial high-level analysis,
and then dividing the project into releases.

You can also incorporate the notions of prototyping and risk analysis from the spiral
model.Next, from the evolutionary model you can incorporate the notion of varying amounts
of time and work, with overlapping releases.

And from the concurrent engineering model, you can break the system down into
components and develop them in parallel.

Re-engineering
No matter what process model you use, in any large or long-lived proje t, the design will

deteriorate. Periodically, therefore, project managers should set aside some time to re-
engineer part or all of the system. The extent of this work can vary considerably: it could
include cleaning up the code
refactoring part of the design.

to make it more readable, completely repl cing a layer, or

Cost estimation
To estimate how much software-engineering time will be required to do some work.

 Elapsed time

The difference in time from the start date to the end date of a task or project

 Development effort

The amount of labour used in person-months or person-days.

To convert an estimate of development effort to an amount of money:

 You multiply it by the weighted average cost (burdened cost) of employing a

software engineer for a month (or a day).

Principles of effective cost esti

Principle 1:

Divide and conquer.

ation

 To make a better estimate, you should divide the project up into individual

subsystems.

 Then divide each subsystem further into the activities that will be required to

develop it.

 Next, you make a series of detailed estimates for each individual activity.

And sum the results to arrive at the grand total estimate for the project

Principle 2:

Include all activities when making estimates.

The time required for all development activities must be taken into account.

Including:

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 69 of 75

r

Principle 3:

- Prototyping

- Design

- Inspecting

- Testing

- Debugging

- Writing user documentation

- Deployment.

Base your estimates on past experience combined with knowledge of the cur ent project.

 If you are developing a project that has many similarities with a past project:

You can expect it to take a similar amount of work.

 Base your estimates on the personal judgement of your experts

or

 Use algorithmic models developed in the software industry as a whole by

analyzing a wide range of projects.

They take into account various aspects of a project’s size and complexity, and provide

formulas to compute anticipated cost.

Algorithmic models

Based on an estimate of some other factor that you can measure, or that is easier to estimate:

 The number of use cases

 The number of distinct requirements

 The number of classes in the domain model

 The number of widgets in the prototype user interface

 An estimate of the number of lines of code

Algorithmic models

A typical algorithmic model uses a formula like the following:

 COCOMO:
 Functions Points:
 S = W1F1 + W2F2 +W3F3 + …

Principle 4:

Be sure to account for differences when extrapolating from other projects.

 Different software developers

 Different development processes and maturity levels

 Different types of customers and users

 Different schedule demands

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 70 of 75

 Different technology

 Different technical complexity of the requirements

 Different domains

 Different levels of requirement stability

Principle 5:

Anticipate the worst case and plan for contingencies.

 Develop the most critical use cases first

If the project runs into difficulty, then the critical features are more likely

to have been completed

 Make three estimates:

Optimistic (O)

- Imagining a everything going perfectly

Likely (L)

- Allowing for typical things going wrong

Pessimistic (P)

- Accounting for everything that could go wring

Principle 6:

Combine multiple independent estimates.

 Use several different techniques and compare the results.

 If there are discrepancies, analyse your calculations to discover what factors

causing the differences.

 Use the Delphi technique.

- Several individuals initially make cost estimates in private.

- They then share their estimates to discover the discrepancies.

- Each individual repeatedly adjusts his or her estimates until a consensus

is reached.

Principle 7:

Revise and refine estimates as work progresses

 As you add detail.

 As the requirements change.

 As the risk management process uncovers problems.

Building software engineering teams
Software engineering is a human process. Choosing appropriate people for a team, and

assigning roles and responsibilities to the team members, is therefore an important project
management skill.

Strict hierarchy versus more flexible arrangements

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 71 of 75

n

m

Software engineering teams can be organized in many different ways. One approach is
to use a hierarchical manager–subordinate structure.

In the egoless approach, decisions are made by consensus; this can lead to more
creative solutions, since group members spontaneously get together to solve problems when
they arise. In general, the egoless approach is most suited to difficult projects with many
technical challenges.

The hierarchical approach is reminiscent of the military or large bureau critic
organizations. It is suitable for large projects with a strict schedule and whereeverybody is well
trained and has a well-defined role.

The ‘chief programmer team’ is a model that is midway between egoless
andhierarchical. It works very much like the surgical team in an operating room.

Choosing an effective size for a team
For a given project or project iteration, the number of people on a team will not be

constant. Initially, just a few people will be involved in defining the scope;later on, additional
people will become involved as requirements, design,implementation and testing get under
way. As the project or iteration nears completion, people will start moving on to the next
iteration or to other work, leavi

It is important to re

g only a few people to undertake deployment.

ember the following rule, however: if your team has an
appropriate number of people to start with, then you cannot generally add people if you get
behind schedule, in the hope of catching up.

Skills needed on a team
No matter how the team is organized, individual people are often assigned specific roles

based on their particular skills. The following are some of the more common roles found on a
development team:

Architect

This person is responsible for leading the decision making about the architecture, and
maintaining the architectural model.

Project manager

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 72 of 75

Responsible for doing the project management tasks described in this chapter. Even in
an egoless team, somebody has to be the custodian of the cost estimates and the schedule.

Configuration management and build specialist
This person ensures that, as changes are made, no new problems

are introduced.

Everyone relies on builds as the baselines for quality assurance and subsequent development.
This person also makes sure that documentation for each change is properly updated.

User interface specialist
Although everybody should interact with users, this person has the particular

responsibility to make sure that usability is kept at forefront of the design process.

Technology specialist
Such a person has specialized knowledge and expertise in a technology such as

databases, networking, operating systems etc.

Hardware and third-party software specialist
This person makes sure that the development team has appropriate types of hardware

and third-party software on which to develop and test the software. This person will install and
perform acceptance testing on any reusable components the team plans to use.

User documentation specialist
This person, who should have a technical writing background, ensures that online help

and user manuals are well written.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 73 of 75

Tester
Even though there should be an independent test group, the development group may

have a person who is responsible for the first stage of testing.

Project scheduling and tracking
Scheduling is the process of deciding in what sequence a set of

activities will be

performed, as well as when they should start and be completed. Tracking is the process of
determining how well you are sticking to the cost estimate and schedule.

Two types of diagram are particularly important in scheduling: PERT charts and Gantt charts.
Earned value charts are useful for tracking.

PERT charts
A PERT chart shows the sequence in which tasks must be completed. Each task has zero

or more predecessors on which it depends, and zero or more successors, which depend on it.
The whole diagram therefore
dependencies.

forms a graph, whose nodes are tasks, and whose arcs are

In each node of a PERT chart, you typically show the elapsed time and effort estimates.
You can also show optimistic, likely and pessimistic estimates.

One of the most important uses of a PERT chart is to determine the critical path. The
critical path indicates the minimum time in which it is possible to complete the project.

Gantt charts
A Gantt chart is used to graphically present the start and end dates of each software

engineering task. A Gantt chart is like a UML sequence chart: one axis shows time and the other
axis shows the activities that will be performed.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 74 of 75

Earned value charts
Earned value is the

amount of work completed, measured according to the
budgetedeffort that the work was supposed to consume. It is also called the budgeted cost of
work performed. As each task is completed, the number of person-months originally planned
for that task is added to the earned value of the project.

An earned value chart has three curves:

The budgeted cost of work scheduled. This is the planned amount of effort that was
supposed to have been expended by any point in time. It is computed by examining at the cost
estimates and the Gantt chart. It is shown here as the solid black curve.

The earned value – that is, the budgeted cost of the work performed. This is shown here
as the dotted curve.

The actual cost of the work performed so far. This is shown as a dashedcurve.

STUDY MATERIAL FOR BCA
SOFTWARE ENGINEERING

SEMESTER - V, ACADEMIC YEAR 2020 -2021

Page 75 of 75

	UNIT - I
	Types of software and their differences
	What is software engineering? Definition:
	Software engineering as a branch of the engineering profession
	Example:
	Quality for the short term vs. quality for the long term
	Use case modeling. Structural modeling.
	Data abstraction
	The object-oriented paradigm: abstractions
	context of data
	Procedural Paradigm Object-oriented Paradigm
	Classes and objects Objects
	Classes and their instances
	Variables versus objects
	Instance variables versus class variables
	Modularity
	Encapsulation
	Resolution
	Efficiency can be a concern in some object-oriented systems
	Resolution (1)

	UNIT - II DEVELOPING REQUIREMENTS
	Benefits:
	Defining the problem and the scope
	What is a requirement? Definition:
	Functional requirements
	1) Observation
	2) Interviewing
	3) Brainstorming
	4) Prototyping
	Business process changes
	Technology changes
	Better understanding of the problem

	UNIT - III MODELING WITH CLASSES
	Additional interesting features:
	Classes
	Labeling associations
	Association classes
	Reflexive associations
	Links as instances of associations
	1) Avoiding unnecessary generalizations
	3) Avoiding having objects change class
	Object diagrams generated from class diagrams
	More advanced features of class diagrams
	Aggregation
	Interfaces
	Two ways of showing the cashier interface
	Descriptive text and other diagrams
	Constraints
	Interaction diagrams
	Instances of classes or actors
	Messages
	Sequence diagrams
	A sequence diagram showing more detail about the student registration
	A sequence diagram showing a loop fragment
	Communication diagrams/Collaboration diagram
	Communication diagrams, patterns and collaborations
	Nested substates and guard co ditions

	UNIT - IV
	Definition:
	Top-down versus bottom-up design
	Special types of design
	Design Principle 1: Divide and conquer
	Design Principle 2: Increase cohesion where possible
	Functional cohesion
	Layer cohesion
	Communicational cohesion
	Sequential cohesion
	Procedural cohesion
	Temporal cohesion
	Utility cohesion
	Design Principle 3: Reduce coupling where possible
	Design Principle 4: Keep the level of abstraction as high as possible
	Design Principle 5: Increase reusability where possible
	Design Principle 6: Reuse existing designs and code where possible
	Design Principle 7: Design for flexibility
	Design Principle 8: Anticipate obsolescence
	Design Principle 9: Design for portability
	Design Principle 10: Design for testability
	Design Principle 11: Design defensively
	Techniques for making good design decisions
	1) Using priorities and objectives to decide among alternatives
	2) Using cost–benefit analysis to choose among alternatives
	Software architecture Definition:
	The importance of developing an architectural model
	Contents of a good architectural model
	How to develop an architectural model
	Describing an architecture using UML
	Packages
	Component diagrams
	Deployment diagrams
	The Multi-Layer architectural pattern
	Design Principles:
	The Client–Server and other distributed architectural patterns
	The Broker architectural pattern
	The Transaction Processing architectural pattern
	The Pipe-and-Filter architectural pattern
	The Model–View–Controller (MVC) architectural pattern

	UNIT - V
	Black-box and glass-box testing
	Combinations of equivalence classes
	Detecting specific categories of defects
	Incorrect logical conditions Defects
	Testing strategy
	Performing a calculation in the wrong part of a control construct Defect
	Testing strategies
	Examples
	Not terminating a loop or recursion Defect testing
	Strategies
	Example
	Not setting up the correct prec Defect
	Testing strategy (1)
	Example (1)
	Not handling null conditions
	Testing strategy (2)
	Examples (1)
	Not handling singleton or non-singleton conditions Defect
	Testing strategy (3)
	Examples (2)
	Off-by-one errors Defect
	Testing strategy (4)
	Examples (3)
	Operator precedence errors Defect
	Testing strategy (5)
	Example (2)
	Use of inappropriate standard Defect
	Testing strategies (1)
	Examples (4)
	A search or sort that is case sensitive when it should not be, or vice versa.
	Not using enough bits or digits to store maximum values
	Testing strategies (2)
	Example (3)
	Using insufficient places after the decimal point or too few significant figures Defects
	Testing strategies (3)
	Example (4)
	Ordering operations poorly so that errors build up
	Example (5)
	Assuming a floating-point value will be exactly equal to some other value Defect
	Testing strategies (4)
	Example (6)
	Defects in timing and co-ordination: deadlocks, livelocks and critical races
	Deadlock and livelock Defects
	Testing strategies (5)
	Critical races Defects
	Testing strategies (6)

	Managing the software process
	Deciding what needs to be done
	Estimating costs
	Ensuring there are suitable people to undertake the project
	Defining responsibilities
	Scheduling
	Making arrangements for the work
	Directing
	Being a technical leader
	Reviewing and approving decisions made by others
	Building morale and supporting staff
	Monitoring and controlling
	Coordinating the work with managers of other projects
	Continually striving to improve the process.
	The waterfall model
	The phased-release model
	The spiral model
	The evolutionary model
	The concurrent engineering model
	Choosing a process model
	Re-engineering
	Principles of effective cost esti
	Divide and conquer.
	Principle 2:
	Principle 3:
	Base your estimates on past experience combined with knowledge of the cur ent project.
	Algorithmic models
	Algorithmic models (1)
	Principle 4:
	Principle 5:
	Principle 6:
	Principle 7:
	Building software engineering teams
	Strict hierarchy versus more flexible arrangements
	Choosing an effective size for a team
	Skills needed on a team
	Architect
	Project manager
	Configuration management and build specialist
	User interface specialist
	Technology specialist
	Hardware and third-party software specialist
	User documentation specialist
	Tester
	Project scheduling and tracking
	PERT charts
	Gantt charts
	Earned value charts

